\(\int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx\) [319]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 110 \[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \]

[Out]

-sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))+(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(
1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d+(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3317, 3903, 3872, 3856, 2719, 2720} \[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}+\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x]),x]

[Out]

(Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + (Sqrt[Cos[c + d*x]]*EllipticF[(c + d
*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3903

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[d^2*Cot[e +
 f*x]*((d*Csc[e + f*x])^(n - 2)/(f*(a + b*Csc[e + f*x]))), x] - Dist[d^2/(a*b), Int[(d*Csc[e + f*x])^(n - 2)*(
b*(n - 2) - a*(n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\int \frac {-\frac {a}{2}-\frac {1}{2} a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2} \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a}+\frac {\int \sqrt {\sec (c+d x)} \, dx}{2 a} \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = \frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.92 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.64 \[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=-\frac {4 i \cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (1+e^{2 i (c+d x)}-\left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+e^{i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right ) \sqrt {\sec (c+d x)}}{a d \left (1+e^{i (c+d x)}\right )^3} \]

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + a*Cos[c + d*x]),x]

[Out]

((-4*I)*Cos[(c + d*x)/2]^2*(1 + E^((2*I)*(c + d*x)) - (1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hype
rgeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + E^(I*(c + d*x))*(1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*
(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sqrt[Sec[c + d*x]])/(a*d*(1 + E^(I*(c + d*
x)))^3)

Maple [A] (verified)

Time = 2.10 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.82

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(200\)

[In]

int(sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a),x,method=_RETURNVERBOSE)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*s
in(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.67 \[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\frac {{\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/2*((-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (I*sqrt
(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x +
 c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + (-I*sqrt(
2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)))
 - 2*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\frac {\int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\cos {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(sec(d*x+c)**(1/2)/(a+a*cos(d*x+c)),x)

[Out]

Integral(sqrt(sec(c + d*x))/(cos(c + d*x) + 1), x)/a

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\int { \frac {\sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{a+a\,\cos \left (c+d\,x\right )} \,d x \]

[In]

int((1/cos(c + d*x))^(1/2)/(a + a*cos(c + d*x)),x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + a*cos(c + d*x)), x)